As presented in PN5

HO/2 COMPOSTS FOR CONTAINER PLANT PRODUCTION

The first component of this project - "Overwintering and shelf life as influenced by compost structure and use of polymer or wetting agent" - was established at Efford E.H.S. during 1987.

Progress report:

Composts of varying structure ie. very open, moderately open, average, poor (25, 18, 12 and 4% Air Filled Forosity) were designed by Neil Bragg ADAS Wolverhampton and used in combination with polymer (Broadleaf P4) or wetting agent (Aqua-Gro). Plant species with clearly defined wilting stages (ie. Hydrangea, Apple Mint and Mimulus) were potted in these mixes during late June 1987, half were overwintered outdoors on gravel beds and the remainder were placed under protection.

Following a relatively mild winter final records were taken in late May/early June to determine AFP and assess shelf life after wetting to field capacity.

Shelf life assessments were carried out in a 'standard' environment under glass to determine the number of days taken to show:

i) first signs of wilting ii) half of plot wilted iii) entire plot wilted. Dry weights of the plants were also obtained.

Recording was carried out in detail for Hydrangea but was limited for Apple Mint and Mimulus since the latter two species suffered severely from gale damage.

Shoot and root growth of Hydrangea did not appear to vary relative to compost/polymer-wetting agent combination. This was partly reflected in plant dry weight values. However in mixes which were untreated or contained polymer there was a trend of increased dry weight as AFP declined.

AFP tests indicated that, with the exception of the 'poor' mix, values obtained in Summer 1988 (Tables 1 and 2) were comparable with initial design. The increase in AFP of 'poor' mixes from initial value of 7% to values of 11-16% at the end of the trial could have been due to air spaces created by loss of fine particles through holes in bottom of the pots.

Growing Media Analyses - Available Nutrients

Data relating to these is presented in Appendix III, Tables 7 and 8, pages 33 and 34. These were taken four weeks past potting from the *Prunus* across the eight CRF treatments with and without KPA added. A standard analysis was used, taking $^{1}/_{15}$ litre from the sample taken and extracting nutrients in 400 ml of water, which was then analysed as for a liquid feed sample.

The major influence on available nutrients was the presence or absence of KPA, as might be expected with a sample close to potting. All mixes with KPA had somewhat higher conductivity, phosphorus, potassium, ammonium N and nitrate N levels than their corresponding mix without KPA. All levels were, however, still all generally within acceptable limits.

Considering the range of rates used with both Ficote and Osmocote Plus formulations, the levels of available nutrients in the growing media were remarkably similar, all falling within the same or one Index higher value.

Conductivity Measurements

These were taken at monthly intervals over a six month period using a PET Havenaar conductivity meter with a probe inserted into the containers on the bed. The results are shown in Appendix IV, Tables 9, 10 and 11, pages 35 and 36; each figure is an average of three replicates with six plants per replicate.

The influence of KPA addition was also picked up on the conductivity measurements in the first month (July), with values slightly higher where it was included. This effect had largely disappeared by the second reading in August and thereafter levels were similar between \pm KPA treatments.

The effect of rate and type of fertilizer on conductivity levels also followed the pattern observed in the 4 week available nutrient analysis, with levels in general largely similar regardless of treatment. Conductivity levels did fall over time with those in October/November considerably lower than the earlier readings, and here the higher rates of fertilizer were beginning to show slightly higher readings than the lower rates in the majority of formulations.

CRF Granules: Residual Analysis

A residual analysis of nutrients remaining in the various CRF formulations was done in November 1994. This involved taking a representative sample of 50 granules from the container which were then ground and total nutrients remaining measured using an acid extraction method. A sample of unused granules was also analysed in a similar manner to enable the percentage

Growing Environments: Outdoors

Under protection (Polythene roof/netting sided -

structure)

Compost Structure :

Air Filled Porosity (approx.)

Very Open	21
Moderately Open	18
Average	12
Poor	7

These structures were achieved by mixing the various fractions of peat sieved from Irish peat bales with 30% super fine, standard or coarse grade perlite. The mixes are of a somewhat 'artificial' nature in relation to what the nursery stock industry are using but enable comparisons of the various treatments using the same basic ingredients.

Wetting Agents/Polymers

a. Polymer: Droadleaf Ph at 1.0 kg/m³ of compost.

Incorporated at mixing in "half" hydrated state

ь.

Wetting Agent: Aqua-Gro at 1:400 dilution

Drenched through pots at various points in production schedule.

Immediately after potting	October 1988	Pre Shelf Life Test 1989
	/	✓
•	1	\checkmark
		✓

c. Untreated Control

3 2

			rot Size
Species	:	Hydrangea 'Mme J de Schmedt'	2 litre
		Herbaceous 'Lupinus'	1 litre
		Alpine 'Edelweis'	90 mm

Method:

Rooted cuttings (or module raised seedlings) were potted late July 1988 and grown on gravel beds under the appropriate environment. Limited plot size and a fully randomized trial makes differential irrigation of the different compost structures difficult and the trial is therefore being hand watered.

Assessments: Overwintering and shelf life assessments will be made late April 1989.

TRIAL 2. INFLUENCE OF NUTRITION DURING PRODUCTION ON SHELF LIFE

Influence of nutrition on overwintering and shelf life was monitored Spring 1988 using plants from the controlled release fertilizer screening trial.

(Progress of these trials are reported in relevant issues of HDC HONS project news).

6. HO/2 - COMPOSTS FOR CONTAINER PLANT PRODUCTION

Object: To investigate effects of compost structure and nutrition on subsequent winter quality and shelf life.

Background

Good compost structure is important for crop growth especially if taking plants overwinter for Spring sales. The "Openness" or Air Filled Porosity (AFP) will depend on the system of production, gravel beds requiring a more open structure than where drained sand beds or protection are in use.

With the trend in the industry to grow plants in more open structured mixes problems are being created in the sales area since these mixes require greater attention to watering. Hence the interest in potential use of wetting agents/polymers for improving shelf life (water holding capacity) of the more open structured composts.

Nutrition is also an important aspect of quality in overwintering and shelf life. There is particular interest in the newer formulations of controlled release fertilizers with extended release patterns which can reduce the need for top dressings overwinter or pre-sale.

The project is planned over three years 1987-1990. In this second year of the work a trial comparable to that of 1987/88 (with refinements) has been established to consolidate results.

- TRIAL 1. OVERWINTERING AND SHELF LIFE AS INFLUENCED BY COMPOST STRUCTURE AND USE OF POLYMER OR WETTING AGENT (1987-1988, 1988-1989)
- Object: To re-look at the potential of a wetting agent or polymer for improving shelf life of plants grown in a range of compost structures.

Problems of experimental procedure had been encountered in previous trials with wetting agents/polymers due to the subjective nature of "when to water". This made it difficult to obtain quantitative data for comparative assessments on water required or frequency of watering during crop production. Thus in this trial work will concentrate on the influence of a representative wetting agent or polymer on shelf life as indicated by time taken for plants to wilt.

Plants selected for inclusion are those which have a rapid and clearly defined wilting stage. Since shelf life of smaller pots is more critical herbaceous and alpine species are included as well as a shrub.

This work is being done in collaboration with ADAS Soil Science, Wolverhampton.

The addition of wetting agent did not appear to influence AFP values. However, in the presence of polymer AFP values for the 4 types of structure were 40-50% greater than untreated controls.

Shelf life assessments - shown as number of days to first sign of wilting (Tables 1 and 2) - indicated that the addition of polymer or application of wetting agent X1, X2 and X3 did not extend the 'time to wilt' period.

It must be stressed that these are preliminary observations on 'raw data'. The data will be statistically analysed before definite conclusions are drawn.

A comparable trial (with refinements in experimental techniques) is currently being established to consolidate these results in order to apply them to the needs of the industry.

Dr. Ruth Finlay Efford EHS July 1988

Table 2

Air Filled Porosity % - Summer 1988;

Number of days to first sign of wilting (values shown in brackets);

for Hydrangea overwintered under protection.

Compost structure:	Very open	Moderately open	Average	Poor
Wetting agent/Polymer	орон	орен		
Untreated control, U		15.4	8.4	11.4
	(18.0)	(21.7)	(24.8)	(25.6)
H H	21.8	13.6	9.4	10.6
	(21.1)	(22.7)	(25.7)	(23.3)
Polymer, P	26.1	22.2	16.1	14.0
	(18.2)	(22.7)	(25.7)	(25.3)
Wetting agent (X1), W,	22.7	16.3	14.4	16.2
ľ	(17.8)	(27.8)	(24.6)	(21.1)
Wetting agent (X2), W ₂	22.2	15.7	10.0	12.7
` 2	(20.4)	(23.7)	(24.0)	(21.6)
Wetting agent (X3), W ₃	21.4	14.7	9.6	12.7
3	(27.6)		(26.0)	(22.0

Table 1

Air Filled Porosity % - Summer 1988;

Number of days to first sign of wilting (values shown in brackets);

for Hydrangea overwintered outdoors.

Compost structure:	Very open	Moderately open	Average	Poor
Wetting agent/Polymer				
Untreated control, U	20.6	12.1	10.6	11.0
	(19.4)	(19.4)	(22.4)	(25.4)
11		10.9	8.5	12.1
11		(19.6)	(20.8)	(24.4)
Polymer, P		18.4 (19.1)	14.8 (21.0)	15.9 (17.5)
Wetting agent (X1) W ₁	21.2	13.3	12.6	16.1
	(14.7)	(18.1)	(20.0)	(16.1)
Wetting agent (X2) W ₂	22.2	12.7	10.2	12.8
	(19.3)	(18.6)	(18.7)	(19.9)
Wetting agent (X3) W ₃		11.5 (18.7)	12.3 (18.5)	11.4 (21.5)

EFFORD EXPERIMENTAL HORTICULTURE STATION

						PERIME	NTAL			RE STA	TION					
PLOT				DATE				41	IITIAL	S .			No of E	XPERII	MEN I	
Ede	lwei	<u>s</u>								<u></u>						
REPL	KATE	/				REP	NITE	2	·····	,		REI	ZIVATE	3		
Bed	39		But	40		Lud	37		Reo	140		Bud	39		Bed	40
	3ki		31	30		13	3u		49	31/3		25	11/3		61	21/3
2	Hu		38	21/2		14	Ilvi		50	Au		26	3163		62	Zu
3	41/1		39	IM.		15	Iu		61	29		27	3ш		63	Alvi
4	21/3		140	3W3		16	3W		52	41/2		28	2161		61	4P
5	44		BU	20		17	4/1/3		53	21/3		29	44		65	21/2
6	21/1		42	11/2		18	14		54	2/1		30	314	,	66	30
7	14		43	3u		19	34		55	11/2		31	41/3		67	11/1
8	48		44	IP.		20	3 W2		56	40		32	3/1		48	Ju
9	11/1		45	3Wz		21	IP		57	21/2		33	IP		69	31/2
	34		46	zu.		Lil.	21/1		58	11/3	_	34	Alva		70	Zu
- !/	14/3		47	4/4/3		23	30		59	4W1		35	<i>ju</i>		11	20
	Zali		48	4/1/2		24	Zu		60	4/11		36	Hu	***************************************	72	11/2
	ļ <u></u>		-													<u> </u>
Hy	Jang.	ear	ļ				<u> </u>	ļ								
	VIST.		ļ			RE	PLUA	Z 2				1	LICATO	E 3		
Bed	39		Bed	40	-	Bed	37		Bid	38		But	37		Bud	38
	1/4		108	3Ni		85	21/1		121	31V2		97	41/3		133	1 /
14	IP		110	Zu	-	86	30		122	1/L		98	Zu			BVI
75	16/2		111	3µ		87	Zu		123	3/i		99	24/2			30
76	Hu		112	1 .		88	41/2		124	1	_	100	1		136	! / .
77	1		113	1	1 1	89	1		125	1		101	/		137	1
18	41V3		114	1 '		90	3W1		126	1 ' 1	_	10.2	1 ′		138	IP
	1 / .	t .	115	3,u	-	9/	34		127		_	103		ļ	139	1 '
80	i	ļ	1/6	Hu	-	92			128	1 ′′ . 1		104	1		140	1 '
Bea	1 .	1	acel	38	- -	93	1 1 .	1	129	11/3		1/05				3/1
81		1	117	21/2	-	94	21/2		130	HILL		106	21/1		142	20
82	31/2		118	21V3		95	1	ļ	131	1 . 1		107	l .	l	143	ALL
83			119	Ju		96	AW3		132	31V3		/08	3W3		144	3W
84	40	<u> </u>	120	3P					 			 				
				-	 				ļ						 	ļ
	_	1	<u> </u>	-	-			1	ļ		,		1			
					-							<u> </u>				-
				<u></u>										<u> </u>	<u></u>	<u> </u>

Lugsin PLOT EFFORD EXPERIMENTAL HORTICULTURE STATION INITIALS No of EXPERIMENT REPLICATE 3 REPLICATE 2 REPLICATE 1 Bed 33 Bad 34 157 11/3 145 206 AP 194 2P 158 34L 170 3W 146 Holi 207 3µ 208 31√3 183 4W3 159 21V3 195 41/2 171 | 1JL 147 3/4 160 Ju 31V1 172 2Wi 209 3pc 185 41/2 161 AW3 173 21V3 197 IJL 174 3P 20 24 186 11/3 162 198 /W 163 11/2 40 187 11 211 1W2 199 HIL 175 41/2 151 212 4M 2Wi 200 3/1/2 176 /1V3 152 4M 11/2 183 213 2/1 189 /IVI 201 4WI 177 4WI 153 31/3 44 2/4 202 24 178 41/3 21/4 /M 154 190 25 2Wz 21/2 Ju 203 21/2 153 31/2 191 167 179 2P 216 /WI 204 31/3 156 zu 192 2W 180 31/2 168 Wetting Agents: Broadley Py Congrists KEY New Open Moderately Open Average Poor Aguagio or 3 masiero W3

FFFORD	EXPERIMENTAL	HORTICUI TURF	MOLTATS

PLOT	, .		DATE			LIF.		NITIA		1		No of I	EXPER	IMENT	
Hydrein	gia														
Hydrus REPHUN	E/	REPL	14. VIE 2	•	REPL	KPE;	3								
						٠,									
	22	Bed			But				<u> </u>	-					-
	Aye .	337	2W1	-	409	l .			<u> </u>	 					-
	4h/3	338	3 ₁₁		410	ļ.				-					-
	11V1 21V3	339	1/1		411	11/3				-					
		340		_	412	24									-
1 1.	4/1 3/1/2	341	3111	-	4/3	4W1 2W3				1					-
	21V1	342 343	4/L 21/3		414	1				-	<u> </u>				
	3 ₁₁	344	21/2		416	2µ 31/2							ļ		
1 1	2W2	345	39	_	417	IM2				 			<u> </u>		T
1 1	31/3	346	411		418	211									
1 1	3P	347	311		418	311									
	111	348	A1/2		420	48									
	31/1	349	2/1		421	311									
1 1	40	350	111/1		422	ip									
	11/2	351	IP		423	21/2									
i i	zu	352	3W3		424	HI									
281	plvi	333	4143		425	3P							1		
	11/3	35/4	A1/2		426	: 1								<u> </u>	
1 1	ulla	355	48		427										
1 1 /	Zµ	356	2/1												
285	28	357	28		429	31/3									
286	10	358	44		430	Apr									
287	μ	359	11/2	_	431	11/1									
288	3u	260	1/4		432	20									
					-										
														ļ	<u> </u>
														ļ	
															_
						· · · · · · · · · · · · · · · · · · ·				ļ	<u> </u>				<u> </u>
											ļ			ļ	ļ
					 		····			ļ					

EFFORD EXPERIMENTAL HORTICULTURE STATION

PLOT	DATE	,	INITIALS	No of EXP	ERIMENT
Lypin	- Management of the state of th		Edelines		
REPUSATE 1	REPLYNTE 2	REPLYATE 3	REPURITE 1	REPUGITE 2	BAUTE 3
					1
- Red 19	Sep 20	Bed 31	Bed 19	Bed 20	Bed 21
217 20	289 Ju	361 20	241 411/2	3/3 3/4	£15 2P
2/8 3//	290 3in	362 1W	242 2N2	314 4 M	386 1/4
219 11/2		363 31V3	243 211	315 IW3	387 3P
220 AP	292 31/2	364 1112	244 11V3	316 21V1	188 21V2
22 3 ₁₁	293 Mr	365 3P	245 1112	317 AP	388 Ju
222 3P	284 31V3	366 M	246 31/3	318 Zu	380 11V3
223 21Vi	245 2Wi	367 21/3	247 2/4	319 11/2	34 yre
224 21V3		368 Zpu	248 3/41	320 3W3	382 21/1
225 3h/2	297 <i>3P</i>	368 41/2	249 3/12	321 41/2	383 AM
226 4Wi	298 HIVA	370 31/2	350 grs	322 11/1	384 34
227 April	289 1111	371 41/3	251 30	323 1/L	35 11/1
228 1W3	300 2/11	372 4/11	252 34	324 3W1	376 21/2
228 21V2	301 414	373 /W	253 111/1	325 24/3	397 24
230 1/1	302 4 ₁ u	374 21/1	254 4W	326 IP	388 HP
231 343	303 40	375 Zu	253 2/1/3	327 Ju	388 31/2
232 3 ₁ u	304 143	376 21V2	256 4P	328 3W2	400 Bu
233 IP	365 110	377 Zu	257 Ju	328 AW3	401 3W
234 1/4	306 1W2	318 3W	258 2W	330 AM	402 3/1
235 142	3.7 3µ	378 48	258 /11	331 21/2	40.3 41/2
236 AM	308 28	350 Ju	260 IP	332 4W	404 4183
237 4113	308 21/3	381 AM	Bed 22	Bed 23	Bed 24
238 2 ju 239 1W	310 21VA	387. AW	261 4113	333 1/L	405 119
	311 41v3	383 10	262 Ju	334 39	106 In2
240 Zu	312 4M	384 1W3	263 3P	335 2P	407 3ha
			264 /11	336 34	408 11/1

\$24.5 V.E.L.	
2385 404 G	
<i>j</i>	
G 1289-312 G E 635 346 H 337-310 G 2	
23	
4-117-240 GIZ 241-260- C	
22	
on 6 plants/plot +	
in Tolans/plst for	
Jahinto 1000	
Ill one Ledus b - yourds	

	COVIRST STRUTURE X WETTING RECOT !	
	COVINOST, STRUCURE X WETTING AGENT I	
-	GUNAD GUNAD	GUARD
WATER CONTRACTOR OF THE PARTY O		
THE PARTY OF THE P	L/19-180 225:26	1 97-108 4/33-144
1		
A VYTERAL PRINCIPLE AND A PRIN		
	\$ 1,07-168	λ
- Line -		H 35:96 H/2-132

	\L'145-156\L'181-192\\\	11.8184, 11.11120
e veneza de la como e e e e e e e e e e e e e e e e e e		
water was shown as a	GUNAD GUNAD 33 34	GUARD GUARD 38 }/
-		GURAS
	H= hydrangea 6 New 5/ plot + guan on onlin edge	H 73:30 H.769-716
, 4 t b		M 73-70 M 709-116
A company of the state of the s	La husin : 7 slants/slot + guierrs extra edge.	GUARD H GUARD H GUARD E
Antonia de la compania de Antonia de La Compania de		
at the second	L'Elderico Tolach plot + presento estante que	E 61-72 (3
A CALL THE PARTY OF THE PARTY O		
-		£ 13-74
-		
-		
The state of the s	PROTECTED AREA	39 GUARD 40
		37